
Chapter 1. Introduction

to Programming

In This Chapter

In this chapter we will take a look at the basic programming terminology

and we will write our first C# program. We will familiarize ourselves with

programming – what it means and its connection to computers and

programming languages.

Briefly, we will review the different stages of software development.

We will introduce the C# language, the .NET platform and the different

Microsoft technologies used in software development. We will examine what

tools we need to program in C#. We will use the C# language to write our

first computer program, compile and run it from the command line as well as

from Microsoft Visual Studio integrated development environment. We will

review the MSDN Library – the documentation of the .NET Framework. It will

help us with our exploration of the features of the platform and the language.

What Does It Mean "To Program"?

Nowadays computers have become irreplaceable. We use them to solve

complex problems at the workplace, look for driving directions, have fun and

communicate. They have countless applications in the business world, the

entertainment industry, telecommunications and finance. It’s not an over-
statement to say that computers build the neural system of our contemporary

society and it is difficult to imagine its existence without them.

Despite the fact that computers are so wide-spread, few people know how

they really work. In reality, it is not the computers, but the programs (the

software), which run on them, that matter. It is the software that makes

computers valuable to the end-user, allowing for many different types of

services that change our lives.

How Do Computers Process Information?

In order to understand what it means to program, we can roughly compare a

computer and its operating system to a large factory with all its workshops,

warehouses and transportation. This rough comparison makes it easier to

imagine the level of complexity present in a contemporary computer. There

are many processes running on a computer, and they represent the

workshops and production lines in a factory. The hard drive, along with the

70 Fundamentals of Computer Programming with C#

files on it, and the operating memory (RAM) represent the warehouses, and

the different protocols are the transportation systems, which provide the input

and output of information.

The different types of products made in a factory come from different

workshops. They use raw materials from the warehouses and store the

completed goods back in them. The raw materials are transported to the

warehouses by the suppliers and the completed product is transported from

the warehouses to the outlets. To accomplish this, different types of

transportation are used. Raw materials enter the factory, go through different

stages of processing and leave the factory transformed into products. Each

factory converts the raw materials into a product ready for consumption.

The computer is a machine for information processing. Unlike the

factory in our comparison, for the computer, the raw material and the product

are the same thing – information. In most cases, the input information is

taken from any of the warehouses (files or RAM), to where it has been

previously transported. Afterwards, it is processed by one or more processes

and it comes out modified as a new product. Web based applications serve as

a prime example. They use HTTP to transfer raw materials and products, and

information processing usually has to do with extracting content from a

database and preparing it for visualization in the form of HTML.

Managing the Computer

The whole process of manufacturing products in a factory has many levels of

management. The separate machines and assembly lines have operators, the

workshops have managers and the factory as a whole is run by general

executives. Every one of them controls processes on a different level. The

machine operators serve on the lowest level – they control the machines with

buttons and levers. The next level is reserved for the workshop managers.

And on the highest level, the general executives manage the different aspects

of the manufacturing processes in the factory. They do that by issuing orders.

It is the same with computers and software – they have many levels of

management and control. The lowest level is managed by the processor and

its registries (this is accomplished by using machine programs at a low level)

– we can compare it to controlling the machines in the workshops. The

different responsibilities of the operating system (Windows 7 for example),

like the file system, peripheral devices, users and communication protocols,

are controlled at a higher level – we can compare it to the management of the

different workshops and departments in the factory. At the highest level, we

can find the application software. It runs a whole ensemble of processes,

which require a huge amount of processor operations. This is the level of the

general executives, who run the whole factory in order to maximize the

utilization of the resources and to produce quality results.

Chapter 1. Introduction to Programming 71

The Essence of Programming

The essence of programming is to control the work of the computer on all

levels. This is done with the help of "orders" and "commands" from the

programmer, also known as programming instructions. To "program" means

to organize the work of the computer through sequences of

instructions. These commands (instructions) are given in written form and

are implicitly followed by the computer (respectively by the operating system,

the CPU and the peripheral devices).

To “program” means writing sequences of instructions in

order to organize the work of the computer to perform

something. These sequences of instructions are called

“computer programs” or “scripts”.

A sequence of steps to achieve, complete some work or obtain some result is

called an algorithm. This is how programming is related to algorithms.

Programming involves describing what you want the computer to do by a

sequence of steps, by algorithms.

Programmers are the people who create these instructions, which control

computers. These instructions are called programs. Numerous programs

exist, and they are created using different kinds of programming

languages. Each language is oriented towards controlling the computer on a

different level. There are languages oriented towards the machine level (the

lowest) – Assembler for example. Others are most useful at the system level

(interacting with the operating system), like C. There are also high level

languages used to create application programs. Such languages include C#,

Java, C++, PHP, Visual Basic, Python, Ruby, Perl, JavaScript and others.

In this book we will take a look at the C# programming language – a

modern high level language. When a programmer uses C#, he gives

commands in high level, like from the position of a general executive in a

factory. The instructions given in the form of programs written in C# can

access and control almost all computer resources directly or via the operating

system. Before we learn how to write simple C# programs, let’s take a good

look at the different stages of software development, because programming,

despite being the most important stage, is not the only one.

Stages in Software Development

Writing software can be a very complex and time-consuming task, involving a

whole team of software engineers and other specialists. As a result, many

methods and practices, which make the life of programmers easier, have

emerged. All they have in common is that the development of each software

product goes through several different stages:

- Gathering the requirements for the product and creating a task;

- Planning and preparing the architecture and design;

72 Fundamentals of Computer Programming with C#

- Implementation (includes the writing of program code);

- Product trials (testing);

- Deployment and exploitation;

- Support.

Implementation, testing, deployment and support are mostly accomplished

using programming.

Gathering the Requirements

In the beginning, only the idea for a certain product exists. It includes a list of

requirements, which define actions by the user and the computer. In the

general case, these actions make already existing activities easier –

calculating salaries, calculating ballistic trajectories or searching for the

shortest route on Google maps are some examples. In many cases the

software implements a previously nonexistent functionality such as

automation of a certain activity.

The requirements for the product are usually defined in the form of

documentation, written in English or any other language. There is no

programming done at this stage. The requirements are defined by experts,

who are familiar with the problems in a certain field. They can also write them

up in such a way that they are easy to understand by the programmers. In

the general case, these experts are not programming specialists, and they are

called business analysts.

Planning and Preparing the Architecture and Design

After all the requirements have been gathered comes the planning stage. At

this stage, a technical plan for the implementation of the project is created,

describing the platforms, technologies and the initial architecture (design) of

the program. This step includes a fair amount of creative work, which is done

by software engineers with a lot of experience. They are sometimes called

software architects. According to the requirements, the following parts are

chosen:

- The type of the application – for example console application, desktop

application (GUI, Graphical User Interface application), client-server

application, Web application, Rich Internet Application (RIA), mobile

application, peer-to-peer application or other;

- The architecture of the software – for example single layer, double

layer, triple layer, multi-layer or SOA architecture;

- The programming language most suitable for the implementation –

for example C#, Java, PHP, Python, Ruby, JavaScript or C++, or a

combination of different languages;

- The technologies that will be used: platform (Microsoft .NET, Java EE,

LAMP or another), database server (Oracle, SQL Server, MySQL, NoSQL

Chapter 1. Introduction to Programming 73

database or another), technologies for the user interface (Flash,

JavaServer Faces, Eclipse RCP, ASP.NET, Windows Forms, Silverlight,

WPF or another), technologies for data access (for example Hibernate,

JPA or ADO.NET Entity Framework), reporting technologies (SQL Server

Reporting Services, Jasper Reports or another) and many other

combinations of technologies that will be used for the implementation of

the various parts of the software system.

- The development frameworks that will simplify the development, e.g.

ASP.NET MVC (for .NET), Knockout.js (for JavaScript), Rails (for Ruby),

Django (for Python) and many others.

- The number and skills of the people who will be part of the

development team (big and serious projects are done by large and

experienced teams of developers);

- The development plan – separating the functionality in stages,

resources and deadlines for each stage.

- Others (size of the team, locality of the team, methods of

communication etc.).

Although there are many rules facilitating the correct analysis and planning, a

fair amount of intuition and insight is required at this stage. This step

predetermines the further advancement of the development process. There is

no programming done at this stage, only preparation.

Implementation

The stage, most closely connected with programming, is the implementation

stage. At this phase, the program (application) is implemented (written)

according to the given task, design and architecture. Programmers

participate by writing the program (source) code. The other stages can

either be short or completely skipped when creating a small project, but the

implementation always presents; otherwise the process is not software

development. This book is dedicated mainly to describing the skills used

during implementation – creating a programmer’s mindset and building the

knowledge to use all the resources provided by the C# language and the .NET

platform, in order to create software applications.

Product Testing

Product testing is a very important stage of software development. Its

purpose is to make sure that all the requirements are strictly followed and

covered. This process can be implemented manually, but the preferred way to

do it is by automated tests. These tests are small programs, which

automate the trials as much as possible. There are parts of the functionality

that are very hard to automate, which is why product trials include automated

as well as manual procedures to ensure the quality of the code.

74 Fundamentals of Computer Programming with C#

The testing (trials) process is implemented by quality assurance engineers

(QAs). They work closely with the programmers to find and correct errors

(bugs) in the software. At this stage, it is a priority to find defects in the code

and almost no new code is written.

Many defects and errors are usually found during the testing stage and the

program is sent back to the implantation stage. These two stages are very

closely tied and it is common for a software product to switch between them

many times before it covers all the requirements and is ready for the

deployment and usage stages.

Deployment and Operation

Deployment is the process which puts a given software product into

exploitation. If the product is complex and serves many people, this process

can be the slowest and most expensive one. For smaller programs this is a

relatively quick and painless process. In the most common case, a special

program, called installer, is developed. It ensures the quick and easy

installation of the product. If the product is to be deployed at a large

corporation with tens of thousands of copies, additional supporting software is

developed just for the deployment. After the deployment is successfully

completed, the product is ready for operation. The next step is to train

employees to use it.

An example would be the deployment of a new version of Microsoft Windows

in the state administration. This includes installation and configuration of

the software as well as training employees how to use it.

The deployment is usually done by the team who has worked on the software

or by trained deployment specialists. They can be system administrators,

database administrators (DBA), system engineers, specialized consultants and

others. At this stage, almost no new code is written but the existing code is

tweaked and configured until it covers all the specific requirements for a

successful deployment.

Technical Support

During the exploitation process, it is inevitable that problems will appear.

They may be caused by many factors – errors in the software, incorrect usage

or faulty configuration, but most problems occur when the users change their

requirements. As a result of these problems, the software loses its abilities to

solve the business task it was created for. This requires additional

involvement by the developers and the support experts. The support

process usually continues throughout the whole life-cycle of the software

product, regardless of how good it is.

The support is carried out by the development team and by specially trained

support experts. Depending on the changes made, many different people

may be involved in the process – business analysts, architects, programmers,

QA engineers, administrators and others.

Chapter 1. Introduction to Programming 75

For example, if we take a look at a software program that calculates salaries,

it will need to be updated every time the tax legislation, which concerns the

serviced accounting process, is changed. The support team’s intervention will
be needed if, for example, the hardware of the end user is changed because

the software will have to be installed and configured again.

Documentation

The documentation stage is not a separate stage but accompanies all the

other stages. Documentation is an important part of software development

and aims to pass knowledge between the different participants in the

development and support of a software product. Information is passed along

between different stages as well as within a single stage. The development

documentation is usually created by the developers (architects, program-

mers, QA engineers and others) and represents a combination of documents.

Software Development Is More than Just Coding

As we saw, software development is much more than just coding (writing

code), and it includes a number of other processes such as: requirements

analysis, design, planning, testing and support, which require a wide variety

of specialists called software engineers. Programming is just a small, but

very essential part of software development.

In this book we will focus solely on programming, because it is the only

process, of the above, without which, we cannot develop software.

Our First C# Program

Before we continue with an in depth description of the C# language and the

.NET platform, let’s take a look at a simple example, illustrating how a
program written in C# looks like:

class HelloCSharp

{
 static void Main(string[] args)

 {
 System.Console.WriteLine("Hello C#!");
 }

}

The only thing this program does is to print the message "Hello, C#!" on

the default output. It is still early to execute it, which is why we will only take

a look at its structure. Later we will describe in full how to compile and run a

given program from the command prompt as well as from a development

environment.

76 Fundamentals of Computer Programming with C#

How Does Our First C# Program Work?

Our first program consists of three logical parts:

- Definition of a class HelloCSharp;

- Definition of a method Main();

- Contents of the method Main().

Defining a Class

On the first line of our program we define a class called HelloCSharp. The

simplest definition of a class consists of the keyword class, followed by its

name. In our case the name of the class is HelloCSharp. The content of the

class is located in a block of program lines, surrounded by curly brackets: {}.

Defining the Main() Method

On the third line we define a method with the name Main(), which is the

starting point for our program. Every program written in C# starts from a

Main() method with the following title (signature):

static void Main(string[] args)

The method must be declared as shown above, it must be static and void, it

must have a name Main and as a list of parameters it must have only one

parameter of type array of string. In our example the parameter is called

args but that is not mandatory. This parameter is not used in most cases so it

can be omitted (it is optional). In that case the entry point of the program can

be simplified and will look like this:

static void Main()

If any of the aforementioned requirements is not met, the program will

compile but it will not start because the starting point is not defined correctly.

Contents of the Main() Method

The content of every method is found after its signature, surrounded by

opening and closing curly brackets. On the next line of our sample program

we use the system object System.Console and its method WriteLine() to

print a message on the default output (the console), in this case "Hello, C#!".

In the Main() method we can write a random sequence of expressions and

they will be executed in the order we assigned to them.

More information about expressions can be found in chapter "Operators and

Expressions", working with the console is described in chapter "Console Input

and Output", classes and methods can be found in chapter "Defining Classes".

Chapter 1. Introduction to Programming 77

C# Distinguishes between Uppercase and Lowercase!

The C# language distinguishes between uppercase and lowercase letters so

we should use the correct casing when we write C# code. In the example

above we used some keywords like class, static, void and the names of

some of the system classes and objects, such as System.Console.

Be careful when writing! The same thing, written in upper-

case, lower-case or a mix of both, means different things in

C#. Writing Class is different from class and System.Console

is different from SYSTEM.CONSOLE.

This rule applies to all elements of your program: keywords, names of

variables, class names etc.

The Program Code Must Be Correctly Formatted

Formatting is adding characters such as spaces, tabs and new lines, which are

insignificant to the compiler and they give the code a logical structure and

make it easier to read. Let’s for example take a look at our first program

(the short version of the Main() method):

class HelloCSharp
{
 static void Main()

 {
 System.Console.WriteLine("Hello C#!");
 }

}

The program contains seven lines of code and some of them are indented

more than others. All of that can be written without tabs as well, like so:

class HelloCSharp
{

static void Main()
{
System.Console.WriteLine("Hello C#!");

}
}

Or on the same line:

class HelloCSharp{static void Main(){System.Console.WriteLine(
"Hello C#!");}}

Or even like this:

78 Fundamentals of Computer Programming with C#

 class
 HelloCSharp
{

 static void Main()
 { System .
Console.WriteLine("Hello C#!") ;} }

The examples above will compile and run exactly like the formatted code but

they are more difficult to read and understand, and therefore difficult to

modify and maintain.

Never let your programs contain unformatted code! That

severely reduces program readability and leads to difficulties

for later modifications of the code.

Main Formatting Rules

If we want our code to be correctly formatted, we must follow several

important rules regarding indentation:

- Methods are indented inside the definition of the class (move to the

right by one or more [Tab] characters);

- Method contents are indented inside the definition of the method;

- The opening curly bracket { must be on its own line and placed exactly

under the method or class it refers to;

- The closing curly bracket } must be on its own line, placed exactly

vertically under the respective opening bracket (with the same

indentation);

- All class names must start with a capital letter;

- Variable names must begin with a lower-case letter;

- Method names must start with a capital letter;

Code indentation follows a very simple rule: when some piece of code is

logically inside another piece of code, it is indented (moved) on the right with

a single [Tab]. For example if a method is defined inside a class, it is indented

(moved to the right). In the same way if a method body is inside a method, it

is indented. To simplify this, we can assume that when we have the character

“{“, all the code after it until its closing “}” should be indented on the right.

File Names Correspond to Class Names

Every C# program consists of one or several class definitions. It is

accepted that each class is defined in a separate file with a name

corresponding to the class name and a .cs extension. When these

requirements are not met, the program will still work but navigating the code

Chapter 1. Introduction to Programming 79

will be difficult. In our example, the class is named HelloCSharp, and as a

result we must save its source code in a file called HelloCSharp.cs.

The C# Language and the .NET Platform

The first version of C# was developed by Microsoft between 1999 and 2002

and was officially released to the public in 2002 as a part of the .NET

platform. The .NET platform aims to make software development for

Windows easier by providing a new quality approach to programming, based

on the concepts of the "virtual machine" and "managed code". At that time

the Java language and platform reaped an enormous success in all fields of

software development; C# and .NET were Microsoft’s natural response to the
Java technology.

The C# Language

C# is a modern, general-purpose, object-oriented, high-level prog-

ramming language. Its syntax is similar to that of C and C++ but many

features of those languages are not supported in C# in order to simplify the

language, which makes programming easier.

The C# programs consist of one or several files with a .cs extension, which

contain definitions of classes and other types. These files are compiled by the

C# compiler (csc) to executable code and as a result assemblies are created,

which are files with the same name but with a different extension (.exe or

.dll). For example, if we compile HelloCSharp.cs, we will get a file with the

name HelloCSharp.exe (some additional files will be created as well, but we

will not discuss them at the moment).

We can run the compiled code like any other program on our computer (by

double clicking it). If we try to execute the compiled C# code (for example

HelloCSharp.exe) on a computer that does not have the .NET Framework,

we will receive an error message.

Keywords

C# uses the following keywords to build its programming constructs (the list

is taken from MSDN in March 2013 and may not be complete):

abstract as base bool break byte

case catch char checked class const

continue decimal default delegate do double

else enum event explicit extern false

finally fixed float for foreach goto

if implicit in int interface internal

is lock long namespace new null

80 Fundamentals of Computer Programming with C#

object operator out override params private

protected public readonly ref return sbyte

sealed short sizeof stackalloc static string

struct switch this throw true try

typeof uint ulong unchecked unsafe ushort

using virtual void volatile while

Since the creation of the first version of the C# language, not all keywords

are in use. Some of them were added in later versions. The main program

elements in C# (which are defined and used with the help of keywords) are

classes, methods, operators, expressions, conditional statements,

loops, data types, exceptions and few others. In the next few chapters of

this book, we will review in details all these programming constructs along

with the use of the most of the keywords from the table above.

Automatic Memory Management

One of the biggest advantages of the .NET Framework is the built-in

automatic memory management. It protects the programmers from the

complex task of manually allocating memory for objects and then waiting for

a suitable moment to release it. This significantly increases the developer

productivity and the quality of the programs written in C#.

In the .NET Framework, there is a special component of the CLR that looks

after memory management. It is called a "garbage collector" (automated

memory cleaning system). The garbage collector has the following main

tasks: to check when the allocated memory for variables is no longer in use,

to release it and make it available for allocation of new objects.

It is important to note that it is not exactly clear at what

moment the memory gets cleaned of unused objects (local

variables for example). According to the C# language

specifications, it happens at some moment after a given

variable gets out of scope but it is not specified, whether this

happens instantly, after some time or when the available

memory becomes insufficient for the normal program

operation.

Independence from the Environment and the

Programming Language

One of the advantages of .NET is that programmers using different .NET

languages can easily exchange their code. For example a C# programmer

can use the code written by another programmer in VB.NET, Managed C++

or F#. This is possible because the programs written in different .NET

Chapter 1. Introduction to Programming 81

languages share a common system of data types, execution infrastructure

and a unified format of the compiled code (assemblies).

A big advantage of the .NET technology is the ability to run code, which is

written and compiled only once, on different operating systems and

hardware devices. We can compile a C# program in a Windows environment

and then execute it under Windows, Windows Mobile, Windows RT or Linux.

Officially Microsoft only supports the .NET Framework on Windows, Windows

Mobile and Windows Phone, but there are third party vendors that offer .NET

implementation on other operating systems.

Mono (.NET for Linux)

One example of .NET implementation for non-Windows environment is the

open-source project Mono (www.mono-project.com). It implements the

.NET Framework and most of its accompanying libraries for Linux, FreeBSD,

iPhone and Android. Mono is unofficial .NET implementation and some

features may work not exactly as expected. It does implement well the core

.NET standards (such as C# compiler and CLR) but does not support fully the

latest .NET technologies and framework like WPF and ASP.NET MVC.

Microsoft Intermediate Language (MSIL)

The idea for independence from the environment has been set in the earliest

stages of creation of the .NET platform and is implemented with the help of a

little trick. The output code is not compiled to instructions for a specific

microprocessor and does not use the features of a specific operating system;

it is compiled to the so called Microsoft Intermediate Language (MSIL).

This MSIL is not directly executed by the microprocessor but from a virtual

environment called Common Language Runtime (CLR).

Common Language Runtime (CLR) – the Heart of .NET

In the very center of the .NET platform beats its heart – the Common

Language Runtime (CLR) – the environment that controls the execution of

the managed code (MSIL code). It ensures the execution of .NET programs

on different hardware platforms and operating systems.

CLR is an abstract computing machine (virtual machine). Similarly to

physical computers, it supports a set of instructions, registries, memory

access and input-output operations. CLR ensures a controlled execution of

the .NET programs using the full capabilities of the processor and the

operating system. CLR also carries out the managed access to the memory

and the other resources of the computer, while adhering to the access rules

set when the program is executed.

http://www.mono-project.com/

82 Fundamentals of Computer Programming with C#

The .NET Platform

The .NET platform contains the C# language, CLR and many auxiliary

instruments and libraries ready for use. There are a few versions of .NET

according to the targeted user group:

- .NET Framework is the most common version of the .NET environment

because of its general purpose. It is used in the development of console

applications, Windows applications with a graphical user interface, web

applications and many more.

- .NET Compact Framework (CF) is a "light" version of the standard

.NET Framework and is used in the development of applications for

mobile phones and other PDA devices using Windows Mobile Edition.

- Silverlight is also a "light" version of the .NET Framework, intended to

be executed on web browsers in order to implement multimedia and

Rich Internet Applications.

- .NET for Windows Store apps is a subset of .NET Framework

designed for development and execution of .NET applications in

Windows 8 and Windows RT environment (the so called Windows

Store Apps).

.NET Framework

The standard version of the .NET platform is intended for development and

use of console applications, desktop applications, Web applications, Web

services, Rich Internet Applications, mobile applications for tablets and smart

phones and many more. Almost all .NET developers use the standard version.

.NET Technologies

Although the .NET platform is big and comprehensive, it does not provide

all the tools required to solve every problem in software development. There

are many independent software developers, who expand and add to the

standard functionality offered by the .NET Framework. For example,

companies like the Bulgarian software corporation Telerik develop subsidiary

sets of components. These components are used to create graphical user

interfaces, Web content management systems, to prepare reports and they

make application development easier.

The .NET Framework extensions are software components, which can be

reused when developing .NET programs. Reusing code significantly facilitates

and simplifies software development, because it provides solutions for

common problems, offers implementations of complex algorithms and

technology standards. The contemporary programmer uses libraries and

components every day, and saves a lot of effort by doing so.

Let’s look at the following example – software that visualizes data in the

form of charts and diagrams. We can use a library, written in .NET, which

draws the charts. All that we need to do is input the correct data and the

Chapter 1. Introduction to Programming 83

library will draw the charts for us. It is very convenient and efficient. Also it

leads to reduction in the production costs because the programmers will not

need to spend time working on additional functionality (in our case drawing

the charts, which involves complex mathematical calculations and controlling

the graphics card). The application itself will be of higher quality because the

extension it uses is developed and supported by specialists with more

experience in that specific field.

Software technologies are sets of classes, modules, libraries, programming

models, tools, patterns and best practices addressing some specific problem

in software development. There are general software technologies, such as

Web technologies, mobile technologies, technologies for computer graphics

and technologies related to some platform such as .NET or Java.

There are many .NET technologies serving for different areas of .NET

development. Typical examples are the Web technologies (like ASP.NET and

ASP.NET MVC), allowing fast and easy creation of dynamic Web applications

and .NET mobile technologies (like WinJS), which make possible the creation

of rich user interface multimedia applications working on the Internet.

.NET Framework by default includes as part of itself many technologies and

class libraries with standard functionality, which developers can use. For

example, there are ready-to-use classes in the system library working with

mathematical functions, calculating logarithms and trigonometric functions

(System.Math class). Another example is the library dealing with networks

(System.Net), it has a built-in functionality to send e-mails (using the

System.Net.Mail.MailMessage class) and to download files from the

Internet (using System.Net.WebClient).

A .NET technology is the collection of .NET classes, libraries, tools,

standards and other programming means and established development

models, which determine the technological framework for creating a certain

type of application. A .NET library is a collection of .NET classes, which offer

certain ready-to-use functionality. For example, ADO.NET is a technology

offering standardized approach to accessing relational databases (like

Microsoft SQL Server and MySQL). The classes in the package (namespace)

System.Data.SqlClient are an example of .NET library, which provide

functionality to connect an SQL Server through the ADO.NET technology.

Some of the technologies developed by software developers outside of

Microsoft become wide-spread and as a result establish themselves as

technology standards. Some of them are noticed by Microsoft and later are

added to the next iteration of the .NET Framework. That way, the .NET

platform is constantly evolving and expanding with new libraries and

technologies. For instance, the object-relational mapping technologies

initially were developed as independent projects and products (like the open

code project NHibernate and Telerik’s OpenAccess ORM). After they gained

enormous popularity, their inclusion in the .NET Framework became a

necessity. And this is how the LINQ-to-SQL and ADO.NET Entity Framework

technologies were born, respectively in .NET 3.5 and .NET 4.0.

84 Fundamentals of Computer Programming with C#

Application Programming Interface (API)

Each .NET library or technology is utilized by creating objects and calling their

methods. The set of public classes and methods in the programming libraries

is called Application Programming Interface or just API. As an example

we can look at the .NET API itself; it is a set of .NET class libraries, expanding

the capabilities of the language and adding high-level functionality. All .NET

technologies offer a public API. The technologies are often referred to simply

as API, which adds certain functionality. For example: API for working with

files, API for working with charts, API for working with printers, API for

reading and creating Word and Excel documents, API for creating PDF

documents, Web development API, etc.

.NET Documentation

Very often it is necessary to document an API, because it contains many

namespaces and classes. Classes contain methods and parameters. Their

purpose is not always obvious and needs to be explained. There are also

inner dependencies between the separate classes, which need to be explained

in order to be used correctly. These explanations and technical instructions on

how to use a given technology, library or API, are called documentation. The

documentation consists of a collection of documents with technical content.

The .NET Framework also has a documentation officially developed and

supported by Microsoft. It is publicly available on the Internet and is also

distributed with the .NET platform as a collection of documents and tools for

browsing and searching.

Chapter 1. Introduction to Programming 85

The MSDN Library is Microsoft’s official documentation for all their products
for developers and software technologies. The .NET Framework’s technical
documentation is part of the MSDN Library and can be found here:

http://msdn.microsoft.com/en-us/library/vstudio/gg145045.aspx. The above

screenshot shows how it might look like (for .NET version 4.5).

What We Need to Program in C#?

After we made ourselves familiar with the .NET platform, .NET libraries and

.NET technologies, we can move on to writing, compiling and executing C#

programs.

In order to program in C#, we need two basic things – an installed .NET

Framework and a text editor. We need the text editor to write and edit the

C# code and the .NET Framework to compile and execute it.

.NET Framework

By default, the .NET Framework is installed along with Windows, but in old

Windows versions it could be missing. To install the .NET Framework, we must

download it from Microsoft’s website (http://download.microsoft.com). It is

best if we download and install the latest version.

Do not forget that we need to install the .NET Framework

before we begin! Otherwise, we will not be able to compile

and execute the program.

If we run Windows 8 or Windows 7, the .NET Framework will

be already installed as part of Windows.

Text Editor

The text editor is used to write the source code of the program and to save

it in a file. After that, the code is compiled and executed. There are many text

editing programs. We can use Windows’ built-in Notepad (it is very basic and

inconvenient) or a better free text editor like Notepad++ (notepad-

plus.sourceforge.net) or PSPad (www.pspad.com).

Compilation and Execution of C# Programs

The time has come to compile and execute the simple example program

written in C# we already discussed. To accomplish that, we need to do the

following:

- Create a file named HelloCSharp.cs;

- Write the sample program in the file;

- Compile HelloCSharp.cs to an executable file HelloCSharp.exe using

the console-based C# compiler (csc.exe);

- Execute the HelloCSharp.exe file.

http://msdn.microsoft.com/en-us/library/vstudio/gg145045.aspx
http://download.microsoft.com/
http://notepad-plus.sourceforge.net/
http://notepad-plus.sourceforge.net/
http://www.pspad.com/

86 Fundamentals of Computer Programming with C#

Now, let’s do it on the computer!

The instructions above vary depending on the operating system. Since

programming on Linux is not the focus of this book, we will take a thorough

look at what we need to write and execute the sample program on Windows.

For those of you, who want to program in C# in a Linux environment, we

already explained the Mono project, and you can download it and experiment.

Here is the code of our first C# program:

HelloCSharp.cs

class HelloCSharp

{
 static void Main()
 {

 System.Console.WriteLine("Hello C#!");
 }
}

Creating C# Programs in the Windows Console

First we start the Windows command console, also known as Command

Prompt. In Windows 7 this is done from the Windows Explorer start menu:

Start -> Programs -> Accessories -> Command Prompt.

It is advised that we run the console as administrator (right click on the

Command Prompt icon and choose “Run as administrator”). Otherwise

some operations we want to use may be restricted.

Chapter 1. Introduction to Programming 87

In Windows 8 the “Run as administrator” command is directly available when
you right click the command prompt icon from the Win8 Start Screen:

After opening the console, let’s create a directory, in which we will

experiment. We use the md command to create a directory and cd command

to navigate to it (enter inside it):

88 Fundamentals of Computer Programming with C#

The directory will be named IntroCSharp and will be located in C:\. We

change the current directory to C:\IntroCSharp and create a new file

HelloCSharp.cs, by using the built-in Windows text editor – Notepad.

To create the text file “HelloCSharp.cs”, we execute the following command

on the console:

notepad HelloCSharp.cs

This will start Notepad with the following dialog window, confirming the

creation of a new file:

Notepad will warn us that no such file exists and will ask us if we want to

create it. We click [Yes]. The next step is to rewrite or simply Copy / Paste the

program’s source code.

Chapter 1. Introduction to Programming 89

We save it by pressing [Ctrl+S] and close the Notepad editor with [Alt+F4].

Now we have the initial code of our sample C# program, written in the file

C:\IntroCSharp\HelloCSharp.cs.

Compiling C# Programs in Windows

The only thing left to do is to compile and execute it. Compiling is done by

the csc.exe compiler.

We got our first error – Windows cannot find an executable file or command

with the name "csc". This is a very common problem and it is normal to

appear if it is our first time using C#. Several reasons might have caused it:

- The .NET Framework is not installed;

- The .NET Framework is installed correctly, but its directory

Microsoft.NET\Framework\v4.0.xxx is not added to the system path

for executable files and Windows cannot find csc.exe.

The first problem is easily solved by installing the .NET Framework (in our

case – version 4.5). The other problem can be solved by changing the system

path (we will do this later) or by using the full path to csc.exe, as it is shown

on the figure below. In our case, the full file path to the C# compiler is

C:\Windows\Microsoft.NET\Framework\v4.0.30319\csc.exe (note that this

path could vary depending on the .NET framework version installed). Strange

or not, .NET 4.5 coming with Visual Studio 2012 and C# 5 installs in a

directory named “v4.0.30319” – this is not a mistake.

Compiling and Running C# Programs in Windows

Now let’s invoke the csc compiler through its full path and pass to it the file

we want to compile as a parameter (HelloCSharp.exe):

90 Fundamentals of Computer Programming with C#

After the execution csc is completed without any errors, and we get the

following file as a result: C:\IntroCSharp\HelloCSharp.exe. To run it, we

simply need to write its name. The result of the execution of our program is

the message "Hello, C#!" printed on the console. It is not great but it is a

good start:

Changing the System Paths in Windows

If we know to use the command line C# compiler (csc.exe) without entering

the full path to it, we could add its folder to the Windows system path.

1. We open Control Panel and select "System". As a result this well-

known window appears (the screenshot is taken from Windows 7):

 In Windows 8 it might look a bit different, but is almost the same:

Chapter 1. Introduction to Programming 91

2. We select "Advanced system settings". The dialog window "System

Properties" appears:

92 Fundamentals of Computer Programming with C#

3. We click the button "Environment Variables" and a window with all

the environment variables shows up:

4. We choose "Path" from the list of System variables, as shown on the

figure, and press the "Edit" button. A small window appears, in which we

enter the path to the directory where the .NET Framework is installed:

Of course, first we need to find where our .NET Framework is installed.

By default it is located somewhere inside the Windows system directory

C:\Windows\Microsoft.NET, for example:

Chapter 1. Introduction to Programming 93

C:\Windows\Microsoft.NET\Framework64\v4.0.30319

Adding the additional path to the already existing ones in the Path

variable of the environment is done by adjoining the path name to the

others and using a semicolon (;) as a spacer.

We must be careful because if we delete any of the existing

system paths, some of Windows’ functions or part of the
installed software might fail to operate properly!

5. When we are done with setting the path, we can try running csc.exe,

without entering its full path. To do so, we open a new cmd.exe

(Command Prompt) window (it is important to restart the Command

Prompt) and type in the "csc" command. We should see the C#

compiler version and a message that no input file has been specified:

Visual Studio IDE

So far we have examined how to compile and run C# programs using the

Windows console (Command Prompt). Of course, there is an easier way to

do it – by using an integrated development environment, which will execute

all the commands we have used so far. Let’s take a look at how to work with

development environments (IDE) and how they will make our job easier.

Integrated Development Environments

In the previous examples, we examined how to compile and run a program

consisting of a single file. Usually programs are made of many files,

sometimes even tens of thousands. Writing in a text editor, compiling and

executing a single file program from the command prompt are simple, but to

do all this for a big project can prove to be a very complex and time-

consuming endeavor. There is a single tool that reduces the complexity,

makes writing, compiling and executing software applications easier – the so

called Integrated Development Environment (IDE). Development

environments usually offer many additions to the main development functions

94 Fundamentals of Computer Programming with C#

such as debugging, unit testing, checking for common errors, access to a

repository and others.

What Is Visual Studio?

Visual Studio is a powerful integrated environment (IDE) for developing

software applications for Windows and the .NET Framework platform. Visual

Studio (VS) supports different programming languages (for example C#,

VB.NET and C++) and different software development technologies

(Win32, COM, ASP.NET, ADO.NET Entity Framework, Windows Forms, WPF,

Silverlight, Windows Store apps and many more Windows and .NET

technologies). It offers a powerful integrated environment for writing code,

compiling, executing, debugging and testing applications, designing user

interface (forms, dialogs, web pages, visual controls and others), data and

class modeling, running tests and hundreds of other functions.

IDE means “integrated development environment” – a tool where you write

code, compile it, run it, test it, debug it, etc. and everything is integrated

into a single place. Visual Studio is typical example of development IDE.

.NET Framework 4.5 comes with Visual Studio 2012 (VS 2012). This is the

latest version of Visual Studio as of March 2013. It is designed for C# 5, .NET

4.5 and Windows 8 development.

VS 2012 is a commercial product but has a free version called Visual Studio

Express 2012, which can be downloaded for free from the Microsoft website

at http://microsoft.com/visualstudio/downloads.

Visual Studio 2012 Express has several editions (for Desktop, for Web, for

Windows 8 and others). If you want to write C# code following the content of

this book, you may use Visual Studio 2012 Express for Desktop or check

whether you have a free license of the full Visual Studio from your University

or organization. Many academic institutions (like Sofia University and Telerik

Software Academy) provide free Microsoft DreamSpark accounts to their

students to get licensed Windows, Visual Studio, SQL Server and other

development tools. If you are student, ask your university administration

about the DreamSpark program. Most universities worldwide are members of

this program.

In this book we will take a look at only the most important functions of VS

Express 2012 – the ones related to coding. These are the functions for

creating, editing, compiling, executing and debugging programs.

Note that older Visual Studio versions such as VS 2010 and VS 2008 can

also be used for the examples in this book but their user interface might look

slightly different. Our examples are based on VS 2012 on Windows 8.

Before we continue with an example, let’s take a more detailed look of the

structure of Visual Studio 2012’s visual interface. Windows are the main

part of it. Each of them has a different function tied to the development of

applications. Let’s see how Visual Studio 2012 looks after the default

installation and configuration:

http://microsoft.com/visualstudio/downloads

Chapter 1. Introduction to Programming 95

Visual Studio has several windows that we will explore (see the figures

above and below):

- Start Page – from the start page we can easily open any of our latest

projects or start a new one, to create our first C# program or to get

help how to use C#.

- Code Editor – keeps the program’s source code and allows opening and
editing multiple files.

- Error List – it shows the errors in the program we develop (if any). We

learn how to use this window later when we compile C# programs in

Visual Studio.

- Solution Explorer – when no project is loaded, this window is empty,

but it will become a part of our lives as C# programmers. It will show

the structure of our project – all the files it contains, regardless if they

are C# code, images or some other type of code or resources.

- Properties – holds a list of the current object’s properties. Properties
are used mainly in the component-based programming, e.g. when we

develop WPF, Windows Store or ASP.NET Web Forms application.

96 Fundamentals of Computer Programming with C#

There are many other windows with auxiliary functionality in Visual Studio but

we will not review them at this time.

Creating a New C# Project

Before doing anything else in Visual Studio, we must create a new project

or load an existing one. The project groups many files, designed to implement

a software application or system, in a logical manner. It is recommended that

we create a separate project for each new program.

We can create a project in Visual Studio by following these steps:

- File -> New Project …

- The “New Project” dialog appears and lists all the different types of

projects we can create. We can choose a project type (e.g. Console

Application or WPF Application), programming language (e.g. C# or

VB.NET) and .NET Framework version (e.g. .NET Framework 4.5) and

give a name to our project (in our case “IntroToCSharp”):

Chapter 1. Introduction to Programming 97

- We choose Console Application. Console applications are programs,

which use the console as a default input and output. Data is entered

with the keyboard and when a result needs to be printed it appears on

the console (as text on the screen in the program window). Aside from

console applications, we can create applications with a graphical user

interface (e.g. Windows Forms or WPF), Web applications, web services,

mobile applications, Windows Store apps, database projects and others.

- In the field "Name" we enter the name of the project. In our case we

choose the name IntroToCSharp.

- We press the [OK] button.

The newly created project is now shown in the Solution Explorer. Also, our

first file, containing the program code, is automatically added. It is named

Program.cs. It is very important to give meaningful names to our files,

classes, methods and other elements of the program, so that we can easily

find them and navigate the code. A meaningful name means a name that

answers the question “what is the intent of this file / class / method /
variable?” and helps developers to understand how the code works. Don’t use
Problem3 for a name, even if you are solving the problem 3 from the

exercises. Name your project / class by its purpose. If your project is well

named, after few months or a year you will be able to explain what it is

intended to do without opening it and looking inside. Problem3 says nothing

about what this project actually does.

In order to rename the Program.cs file, we right click on it in the Solution

Explorer and select "Rename". We can name the main file of our C# program
HelloCSharp.cs. Renaming a file can also be done with the [F2] key when

the file is selected in the Solution Explorer:

98 Fundamentals of Computer Programming with C#

A dialog window appears asking us if we want to rename class name as well

as the file name. We select "Yes".

Chapter 1. Introduction to Programming 99

After we complete all these steps we have our first console application named

IntroToCSharp and containing a single class HelloCSharp (stored in the file

HelloCSharp.cs):

All we have to do is add code to the Main() method. By default, the

HelloCSharp.cs code should be loaded and ready for editing. If it is not, we

double click on the HelloCSharp.cs file in the Solution Explorer to load it. We

enter the following source code:

100 Fundamentals of Computer Programming with C#

Compiling the Source Code

The compiling process in Visual Studio includes several steps:

- Syntax error check;

- A check for other errors, like missing libraries;

- Converting the C# code into an executable file (a .NET assembly). For

console applications it is an .exe file.

To compile a file in Visual Studio, we press the [F6] key or [Shift+Ctrl+B].

Usually, errors are underlined in red, to attract the programmer’s attention,
while we are still writing or when compiling, at the latest. They are listed in

the "Error List" window if it is visible (if it is not, we can show it from the

"View" menu of Visual Studio).

If our project has at least one error, it will be marked with a small red "x" in

the "Error List" window. Short info about the problem is displayed for each

error – filename, line number and project name. If we double click any of the

errors in the "Error List", Visual Studio will automatically take us to the file

and line of code where the error has occurred. In the screenshot above the

problem is that we have “using Systema;” instead of “using System”.

Starting the Project

To start the project, we press [Ctrl+F5] (holding the [Ctrl] key pressed and

at the same time pressing the [F5] key).

The program will start and the result will be displayed on the console,

followed by the "Press any key to continue . . ." message:

Chapter 1. Introduction to Programming 101

The last message is not part of the result produced by the program. It is a

reminder by Visual Studio that our program has finished its execution

and it gives us time to see the result. If we run the program by only pressing

[F5], that message will not appear and the result will vanish instantly after

appearing because the program will have finished its execution, and the

window will be closed. That is why we should always start our console

applications by pressing [Ctrl+F5].

Not all project types can be executed. In order to execute a C# project, it

needs to have one class with a Main() method declared in the way described

earlier in this chapter.

Debugging the Program

When our program contains errors, also known as bugs, we must find and

remove them, i.e. we need to debug the program. The debugging process

includes:

- Noticing the problems (bugs);

- Finding the code causing the problems;

- Fixing the code so that the program works correctly;

- Testing to make sure the program works as expected after the changes

are made.

The process can be repeated several times until the program starts working

correctly. After we have noticed the problem, we need to find the code

causing it. Visual Studio can help by allowing us to check step by step

whether everything is working as planned.

To stop the execution of the program at designated positions we can place

breakpoints. The breakpoint is associated with a line of the program. The

program stops its execution on the lines with breakpoints, allowing for the

rest of the code to be executed step by step. On each step we can check and

even change the values of the current variables.

Debugging is a sort of step by step slow motion execution of the program. It

gives us the opportunity to easily understand the details of the code and see

where exactly and why the errors have occurred.

Let’s create an intentional error in our program, to illustrate how to use

breakpoints. We will add a line to the program, which will create an exception

during the execution (we will take a detailed look at exceptions in the

"Exception Handling" chapter).

For now let’s edit our program in the following way:

HelloCSharp.cs

class HelloCSharp

102 Fundamentals of Computer Programming with C#

{
 static void Main()
 {

 throw new System.NotImplementedException(
 "Intended exception.");
 System.Console.WriteLine("Hello C#!");

 }
}

When we start the program again with [Ctrl+F5] we will get an error and it

will be printed on the console:

Let’s see how breakpoints will help us find the problem. We move the

cursor to the line with the opening bracket of the Main() method and press

[F9] (by doing so we place a breakpoint on that line). A red dot appears,

indicating that the program will stop there if it is executed in debug mode:

Now we must start the program in debug mode. We select Debug -> Start

Debugging or press [F5]. The program will start and immediately stop at

the first breakpoint it encounters. The line will be colored in yellow and we

can execute the program step by step. With the [F10] key we move to the

next line.

When we are on a given line and it is colored in yellow, the code on that line

is not executed yet. It executes once we have passed that line. In this case

Chapter 1. Introduction to Programming 103

we have not received the error yet despite the fact that we are on the line we

added and should cause it:

We press [F10] one more time to execute the current line. This time Visual

Studio displays a window specifying the line, where the error occurred as well

as some additional details about it:

104 Fundamentals of Computer Programming with C#

Once we know where exactly the problem in the program is, we can easily

correct it. To do so, first, we need to stop the execution of the program before

it is finished. We select Debug –> Stop Debugging or press [Shift+F5].

After that we delete the problem line and start the program in normal mode

(without debugging) by pressing) [Ctrl+F5].

Alternatives to Visual Studio

As we have seen, in theory, we can do without Visual Studio, but in practice

that is not a good idea. The work required compiling a big project, finding all

the errors in the code and performing numerous other actions would simply

take too much time without Visual Studio.

On the other hand, Visual Studio is not a free software developing

environment (the full version). Many people cannot afford to buy the

professional version (this is also true for small companies and some people

engaged in programming).

This is why there are some alternatives to Visual Studio (except VS Express

Edition), which are free and can handle the same tasks relatively well.

SharpDevelop

One alternative is SharpDevelop (#Develop). We can find it at the following

Internet address: http://www.icsharpcode.NET/OpenSource/SD/. #Develop is

an IDE for C# and is developed as an open-source project. It supports the

majority of the functionalities offered in Visual Studio 2012 but also works in

Linux and other operating systems. We will not review it in details but you

should keep it in mind, in case you need a C# development environment and

Visual Studio is not available.

MonoDevelop

MonoDevelop is an integrated software development environment for the

.NET platform. It is completely free (open source) and can be downloaded at:

http://monodevelop.com. With MonoDevelop, we can quickly and easily write

fully functional desktop and ASP.NET applications for Linux, Mac OS X and

Windows. It also enables programmers to easily transfer projects created in

Visual Studio to the Mono platform and make them functional in other

platforms.

Decompiling Code

Sometimes programmers need to see the code of a given module or program,

not written by them and with no source code available. The process, which

generates source code from an existing executable binary file (.NET

assembly – .exe or .dll) is called decompiling.

We might need to decompile code in the following cases:

http://www.icsharpcode.net/OpenSource/SD/
http://monodevelop.com/

Chapter 1. Introduction to Programming 105

- We want to check how a given algorithm is implemented but we do not

have the source code, e.g. to check how Array.Sort() internally works.

- There are several options when using some .NET library, and we want to

find the optimal choice. We want to see how to use certain API

digging into some compiled code that uses it.

- We have no information how a given library works, but we have the

compiled code (.NET assembly), which uses it, and we want to find out

how exactly the library works.

- We have lost our source code and we want to recover it. Code

recovery through decompilation will result in lost variable names,

comments, formatting, and others, but is better than nothing.

Decompiling is done with the help of tools, which are not standard part of

Visual Studio. The first popular .NET decompiler was Red Gate’s Reflector

(before it became commercial in early 2011).

Telerik is offering a good and completely free .NET decompiler called

JustDecompile. It can be downloaded from the company’s website:
http://www.telerik.com/products/decompiler.aspx. JustDecompile allows code

decompilation directly in Visual Studio and also has an external stand-alone

GUI application for browsing assemblies and decompile their code:

http://www.telerik.com/products/decompiler.aspx

106 Fundamentals of Computer Programming with C#

Another good decompilation tool for .NET is the ILSpy, which is developed

around the SharpDevelop project. ILSpy can be downloaded at:

http://ilspy.net. The program does not require installation. After we start it,

ILSpy loads some of the standard .NET Framework libraries. Via the menu File

-> Open, we can open a certain .NET assembly. We can also load an assembly

from the GAC (Global Assembly Cache). This is how ILSpy looks like:

In ILSpy there are two ways to find out how a given method is implemented.

For example, if we want to see how the static method

System.Currency.ToDecimal works, first we can use the tree on the left to

find the Currency class in the System namespace and finally select the

ToDecimal method. If we click on any method, we will be able to see its

source code in C#. Another way to find a given class is using the search

engine in ILSpy. It searches through the names of all classes, interfaces,

methods, properties etc. from the loaded assemblies. Unfortunately, the

version at the time of writing of this book (ILSpy 2.1) can decompile only the

languages C#, VB.NET and IL.

JustDecompile and ILSpy are extremely useful tools, which can help almost

every day when developing .NET software and we should definitely download

at least one and play with it. When we are wondering how a certain method

works or how something is implemented in a given assembly, we can always

rely on the decompiler to find out.

http://ilspy.net/

Chapter 1. Introduction to Programming 107

C# in Linux, iOS and Android

C# programming in Linux is not very developed compared to that in Windows.

We do not want to completely skip it, so we will give some guidelines on how

to start programming in C# in Linux, iOS and Android.

The most important thing that we need in order to write C# code in Linux is a

.NET Framework implementation. Microsoft .NET Framework is not available

for Linux but there is an open-source .NET implementation called

“Mono”. We can download Mono at its official website: http://www.mono-

project.com. Mono allows us to compile and execute C# programs in a Linux

environment and on other operating systems. It contains a C# compiler, a

CLR, a garbage collector, the standard .NET libraries and many of the libraries

available for .NET Framework in Windows like Windows Forms and ASP.NET.

Mono supports compiling and running C# code not only in Linux but also in

Solaris, Mac OS X, iOS (iPhone / iPad) and Android. The iOS version

(MonoTouch) and the Android version of Mono (Mono for Android) are

commercial projects, while Mono for Linux is open-source free software.

Of course, Visual Studio does not work in Linux environment but we can use

the #Develop or MonoDevelop as C# IDE in Linux.

Other .NET Languages

C# is the most popular .NET language but there are few other languages that

may be used to write .NET programs:

- VB.NET – Visual Basic .NET (VB) is Basic language adapted to run in

.NET Framework. It is considered a successor of Microsoft Visual Basic 6

(legacy development environment for Windows 3.1 and Windows 95). It

has strange syntax (for C# developers) but generally does the same as

C#, just in different syntax. The only reason VB.NET exists is historical:

it is successor of VB6 and keeps most of its syntax. Not recommended

unless you are VB6 programmer.

- Managed C++ – adaptation of the C++ programming language to .NET

Framework. It can be useful if you need to quickly convert existing C++

code to be used from .NET. Not recommended for new projects. Not

recommended for the readers of this book, even if someone has some

C++ experience, because it makes .NET programming unnecessary

complicated.

- F# – an experiment to put purely functional programming paradigm in

.NET Framework. Not recommended at all (unless you are functional

programming guru).

- JavaScript – it may be used to develop Windows 8 (Windows Store)

applications through the WinJS technology. It might be a good choice

for skillful HTML5 developers who have good JavaScript skills. Not

recommended for the readers of this book because it does not support

Console applications.

http://www.mono-project.com/
http://www.mono-project.com/

108 Fundamentals of Computer Programming with C#

Exercises

1. Install and make yourself familiar with Microsoft Visual Studio and

Microsoft Developer Network (MSDN) Library Documentation.

2. Find the description of the System.Console class in the standard .NET

API documentation (MSDN Library).

3. Find the description of the System.Console.WriteLine() method and its

different possible parameters in the MSDN Library.

4. Compile and execute the sample program from this chapter using the

command prompt (the console) and Visual Studio.

5. Modify the sample program to print a different greeting, for example

"Good Day!".

6. Write a console application that prints your first and last name on the

console.

7. Write a program that prints the following numbers on the console 1,

101, 1001, each on a new line.

8. Write a program that prints on the console the current date and time.

9. Write a program that prints the square root of 12345.

10. Write a program that prints the first 100 members of the sequence 2, -

3, 4, -5, 6, -7, 8.

11. Write a program that reads your age from the console and prints your

age after 10 years.

12. Describe the difference between C# and the .NET Framework.

13. Make a list of the most popular programming languages. How are they

different from C#?

14. Decompile the example program from exercise 5.

Solutions and Guidelines

1. If you have a DreamSpark account (www.dreamspark.com), or your

school or university offers free access to Microsoft products, install the

full version of Microsoft Visual Studio. If you do not have the

opportunity to work with the full version of Microsoft Visual Studio, you

can download Visual Studio Express for free from the Microsoft web

site; it is completely free and works well for educational purposes.

2. Use the address given in the ".NET Documentation" section of this

chapter. Open it and search in the tree on the left side. A Google search

will work just as well and is often the fastest way to find documentation

for a given .NET class.

3. Use the same approach as in the previous exercise.

http://www.dreamspark.com/

Chapter 1. Introduction to Programming 109

4. Follow the instruction from the Compiling and Executing C# Programs

section.

5. Use the code from the sample C# program from this chapter and

change the printed message.

6. Find out how to use the System.Console.Write() method.

7. Use the System.Console.WriteLine() method.

8. Find out what features are offered by the System.DateTime class.

9. Find out what features are offered by the System.Math class.

10. Try to learn on your own how to use loops in C#. You may read about

for-loops in the chapter “Loops”.

11. Use the methods System.Console.ReadLine(), int.Parse() and

System.DateTime.AddYears().

12. Research them on the Internet (e.g. in Wikipedia) and take a closer

look at the differences between them. You will find that C# is a

programming language while .NET Framework is development platform

and runtime for running .NET code. Be sure to read the section “The C#

Language and the .NET Platform” form this chapter.

13. Find out which are the most popular languages and examine some

sample programs written in them. Compare them to C#. You might take

a look at C, C++, Java, C#, VB.NET, PHP, JavaScript, Perl, Python

and Ruby.

14. First download and install JustDecompile or ILSpy (more information

about them can be found in the “Code Decompilation” section). After you

run one of them, open your program’s compiled file. It can be found in

the bin\Debug subdirectory of your C# project. For example, if your

project is named TestCSharp and is located in C:\Projects, then the

compiled assembly (executable file) of your program will be the following

file C:\Projects\TestCSharp\bin\Debug\TestCSharp.exe.

http://www.telerik.com/justdecompile.aspx

